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Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra
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Random matrix theory~RMT! is a powerful statistical tool to model spectral fluctuations. This approach has
also found fruitful application in quantum chromodynamics~QCD!. Importantly, RMT provides very efficient
means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless
energy in complete spectra of the QCD Dirac operator for staggered fermions from SU~2! lattice gauge theory
for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the
Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which
suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze
several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us
to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is
discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation func-
tions. @S0556-2821~99!01901-3#

PACS number~s!: 12.38.Gc, 05.50.1q, 11.30.Rd, 64.60.Cn
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I. INTRODUCTION

It is now well established that random matrix theo
~RMT! accurately models spectral fluctuations in an ab
dant variety of different systems, such as chaotic, disorde
and many-body systems; see the review in Ref.@1#. In recent
years, RMT has in addition been successfully introduced
the study of certain aspects of quantum chromodynam
~QCD!. The interest focuses on the spectral properties of
Euclidean Dirac operator. The eigenvalue equation un
consideration reads

iD” @A#ck5lk@A#ck , ~1!

where iD” @A#5 i ]”1gA” ata is the massless Euclidean Dira
operator. The coupling constant is denoted byg and theta

are the generators of the gauge group. The distribution of
color gauge fieldsA” a is given by the Euclidean QCD part
tion function. As these gauge fields vary over the ensem
of gauge field configurations, the eigenvalues fluctuate ab
their average positions. The average spectral density is
fined as

r~l!5K (
k

d~l2lk@A# !L
A

. ~2!

The average has to be performed over all gauge field c
figurations.

In contrast with most other systems, however, there
two different regimes in QCD spectra which can be a
dressed in an RMT approach, the microscopic region and
bulk region. Since the Dirac operator only couples states
opposite chirality, the eigenvalues are pairwise positive
negative. This is the reason why two types of spectral fl
tuations can be distinguished, namely spectral fluctuation
the microscopic limit near zero virtuality,l50, and in the
bulk of the spectrum.

Concerning the microscopic region, chiral random mat
theory ~chRMT! @2# incorporates the global symmetry pro
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erties, in particular chiral symmetry, ofiD” . It predicts level
repulsion between positive and negative eigenvalues wh
results in a distinct behavior of the eigenvalue density a
correlations near the origin. It is possible to calculate spec
correlators analytically in the microscopic limit@3–5#, and to
compare the predictions of chRMT with complete spectra
the lattice QCD Dirac operator on reasonably large lattic
Indeed, remarkable agreement is found@6–10# at the edge of
the spectrum.

Sufficiently far away from the origin, however, the repu
sion of negative and positive eigenvalues should become
important. Therefore the chiral structure of the theory is n
expected to be of relevance in the bulk of the spectrum. T
is the region we will address on in this work. By comparin
with lattice data, it has already been shown that conventio
RMT properly models these fluctuations in the bu
@11,12,10#. It is important to go beyond these statistic
analyses made so far in order to see to what scales RMT
apply. The identification of such scales gives a fundame
insight into a system. Investigations of this type have be
performed in great detail in disordered systems and in ma
body systems. There, the Thouless energyEc or the spread-
ing width G determine the scaleEc /D whereD is the level
spacing, in which the fluctuations are of RMT type@13,14#.
Beyond this scale, deviations from the RMT behavior occ
see Ref.@1# for a detailed discussion and further referenc

Recently, theoretical studies@15–17# established a link
between disordered systems and QCD. The range of vali
of RMT, lRMT , was introduced as an equivalent of a Tho
less energyEc . A scalinglRMT /D}AV was proposed where
V is the four-volume of the system. Indeed, such a sca
behavior was found very recently in the microscopic reg
@18# for deviation from RMT behavior. As argued in@16# a
corresponding effect should also be seen in the bulk of
spectrum. This is what we will investigate.

The identification of this scalelRMT /D in QCD spectra
could lead to an improved understanding of certain featu
of QCD and allows us to separate the stochastic noise of
short range fluctuations from the true dynamics of the Q
©1999 The American Physical Society01-1



iv
m
h
-
o

an
a

e

ex
e

al
tio
u
c

tra

t
th
he
tis
on
o

nd
Se

ct
i

fi
nn
e
a

av
n
e

ym
a
ia

d

io
i-

i-

ge

th

den-

en-
the
f
een
ned

by
in
m-

ata
ec-
g

ort
B,
rge
f a
orr-
A

m-

se

T. GUHR, J.-Z. MA, S. MEYER, AND T. WILKE PHYSICAL REVIEW D59 054501
vacuum. Eventually, it could be possible to set up effect
models or simplify the presently used simulation algorith
in lattice gauge theories. In this work, we search for suc
universal scalelRMT /D in the bulk region by analyzing lat
tice data. In contrast to the microscopic region, the bulk
the spectrum is expected to have a translation invariant
logue of the Thouless energy. We emphasize that our an
sis is self-consistent. Advantageously, it does not depend
any model that aims at an explanation for the occurrenc
this universal scale.

The high amount and quality of the data sets which
ceed the existing ones by far enable us to considerably
tend the energy range for our analysis. Moreover, the we
of data makes it possible to directly address bare correla
functions which cannot be analyzed in most systems. F
thermore, in doing so we discuss some technical aspe
which are of general interest for the investigation of spec
fluctuations.

This paper is organized as follows: In Sec. II the da
under investigation is presented. A detailed analysis of
statistical properties is given in Sec. III. This includes t
introduction of the numerical unfolding approaches, a sta
tical analysis of the nearest neighbor spacing distributi
two-point spectral correlations and higher order spectral c
relations. Deviations from the RMT predictions are fou
and interpreted. Summary and discussion are given in
IV.

II. COMPLETE DIRAC SPECTRA
IN SU„2… GAUGE THEORY

The computation of large ensembles of complete spe
of the Euclidean Dirac operator for staggered fermions
SU~2! gauge theory has recently been performed Ref.@19#
expanding the numerical work of@20#. In lattice gauge
theory simulations one generates a sequence of gauge
configurations distributed according to the Boltzma
weight. On each of the gauge field configurations the eig
value equation~1! is solved numerically on the lattice and
distinct partition of eigenvalues is obtained. The lattices h
the sizeV5L4 whereL denotes the length of the Euclidea
box with a lattice spacinga. Parameters and statistics of th
simulation are summarized in Table I. The choice of SU~2!
as the gauge group implies that every eigenvalue ofiD” is
twofold degenerate due to a global charge conjugation s
metry. The random-matrix ensemble for this situation h
symplectic symmetry and is referred to as chiral Gauss
symplectic ensemble~chGSE! @21,1#. In addition, the
squared Dirac operator2D” 2 couples only even to even an
odd to odd lattice sites, respectively. Thus,2D” 2 has V/2
distinct eigenvalues. We use the Cullum-Willoughby vers
of the Lanczos algorithm@22# to compute the complete e
genvalue spectrum of the sparse Hermitian matrix2D” 2 in
order to avoid numerical uncertainties for the low-lying e
genvalues. There exists an analytical sum rule, tr(2D” 2)
54V, for the distinct eigenvalues of2D” 2 @20#. We have
checked that this sum rule is satisfied by our data, the lar
relative deviation was about 1028.

Examples of the spectra are shown in Fig. 1, where
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average level density and the integrated average level
sity, see Eq.~3!, for a 164, i.e. L516a, lattice are shown. It
should be pointed out that due to theV/2532768 distinct
eigenvalues of each configuration there are millions of eig
values at our disposal. We used two different values of
gauge couplingb54/g2 where the weak coupling regime o
SU~2! sets in and where most of the scaling test have b
performed so far. Finally, the chiral condensate was obtai
by fitting the spectral density and extractingr(0). Ourfind-
ings @19# are in rough agreement with the values obtained
Hands and Teper@23# for the same simulation parameters
SU~2! but only the 20 smallest eigenvalues have been co
puted by these authors.

III. DATA ANALYSIS

In this section we give a detailed analysis of the d
introduced in the previous section in the bulk of the sp
trum. We start with a description of the numerical unfoldin
approaches and their properties in Sec. III A. After a sh
discussion of the nearest neighbor distribution in Sec. III
we present data for spectral two-point correlations at la
scales in Sec. III C. From this we identify the equivalent o
Thouless energy. Furthermore we discuss higher order c
elators, in particular three-point correlations in Sec. III D.

TABLE I. Lattice parameters and statistical analysis of the co
plete spectra of the Dirac operator.

b L Configurations lmin t int

1.8 8 1999 0.00295~3! 0.69~7!

2.0 4 9979 0.0699~5! 1.3~1!

6 4981 0.0127~1! 0.69~5!

8 3896 0.00401~3! 0.71~6!

10 1416 0.00164~2! 0.7~1!

2.2 6 5542 0.0293~3! 1.7~2!

8 2979 0.0089~1! 1.2~2!

2.4 16 921 0.00390~9! 1.2~3!

2.5 8 576 0.194~9! 8~3!

16 543 0.016~2! 10~4!

FIG. 1. Average level densityr̄(l) for b52.4 andb52.5 ~left

plot! and integrated average level densityN̄(l), see Eq.~3!, for
b52.5 ~right plot!. The eigenvalues are given in units of the inver
lattice spacing (2a)21. The bin size in the left plot is 0.01(2a)21.
1-2
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STATISTICAL ANALYSIS AND THE EQUIVALENT OF . . . PHYSICAL REVIEW D 59 054501
qualitative explanation of deviations from RMT predictio
which are not due to the Thouless energy is given in S
III E.

A. Unfolding

As RMT is capable of making predictions for the fluctu
tions on the scale of the mean level spacing, one ha
remove the influence of the level density by unfolding t
spectra. The cumulative spectral function

N~l!5E
2`

l

dl8(
i 51

V/2

d~l82l i !, ~3!

is the number of levels below or at the energyl. It is fre-
quently referred to as staircase function. It can be separ
into an average partNave(l), whose derivative is the leve
density, and a fluctuating partNfluc(l),

N~l!5Nave~l!1Nfluc~l!. ~4!

The average part is determined by gross features of the
tem and has to be removed. The fluctuating part is in
relevant systems of orderO(1) and contains the correlation
to be analyzed. After extraction of the average partNave(l),
it is unfolded from the spectra by the introduction of a d
mensionless energy variable

j i5Nave~l i !. ~5!

In this variable, the spectra have mean level spacing u
everywhere,

1/rave~j![1, ~6!

where rave(j)5dNave(j)/dj. However, the extraction o
Nave(l) from the data is non-trivial in our case because lit
is known analytically about the level density of QCD spe
tra, particularly in lattice calculations. We thus have to res
to phenomenological unfolding procedures. Faulty unfold
leads to wrong results, especially on such large energy sc
that we are interested in. In the subsequent Secs. III A
III A 2 and III A 3, we discuss three different procedure
used here, ensemble unfolding, configuration unfolding
windowing, respectively.

1. Ensemble unfolding

In RMT one deals with an ensemble of matrices, wh
the matrix elements of each member are chosen rando
Spectral observables predicted by RMT are calculated a
average over the ensemble. This ensemble average is
noted by a bar( . . . ). Butobservables can also be calculat
as spectral average, i.e. one performs a running average
overlapping intervals@a,a1L# of lengthL in the spectrum
of one member. In order to distinguish it from ensemb
average, we denote spectral averaging by angular brac
^ . . . &. In the limit of large matrix dimension both averag
are equivalent@1#. This property is called ergodicity.

In most experiments, one measures one—preferably l
—spectrum. Thus observables are usually calculated f
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spectral average. One uses the theoretical concept of er
icity to compare the RMT predictions with the experimen
results. In our case, however, the data consists of config
tions, i.e. forms an ensemble. Hence, questions relate
ergodicity arise not only for the calculation of observable
but also in the determination of the staircase function, i.e
the unfolding procedure. We have in principle two very d
ferent ways of unfolding our data: first, ensemble unfoldin
Nave(l)5N̄(l), i.e., we determine the smooth part of th
staircase function by averaging over the ensemble, and
ond, configuration unfolding,Nave(l)5^N(l)&, i.e. we de-
termine the smooth part of the staircase function for ev
configuration separately. The results differ considerab
N̄(l)Þ^N(l)&, for most of the configurations. The en
semble averaged staircaseN̄(l) for the lattice QCD Dirac
operator is shown in Fig. 1. We findN̄(l) by dividing the
energy range inm bins with widthDl and average the den
sity r~l,l1Dl! for each bin over all configurations. We the
calculate the staircase function asN̄(l)5( i 51

m r(l i ,l i

1Dl)Dl, with lm5l. In Fig. 2, the difference between th
ensemble averaged staircase function and the configura
wise averaged ones, forV5164 andb52.4, for 50 arbitrarily
chosen configurations is plotted. Each data point repres
the differenceN̄(l i , j )2^N(l i , j )&, where i enumerates the
eigenvalues,i 51, . . .,32768 andj is the configuration num-
ber j 51, . . .,50. We plot only every 500th eigenvalue
There are deviations of aboutN̄(l)2^N(l)&5O(101) in
certain energy ranges.

If the spectra are unfolded using the ensemble avera
staircase functionN̄(l), observables should then also be c
culated as an ensemble average for a fixed value ofl. But we
checked that our results do not depend onl in a wide range
of the bulk. This property is called translational invariance
is actually not present in the microscopic region, where i
destroyed by point wise symmetry between positive a

FIG. 2. Difference between the integrated level densityN̄(l)
averaged over all 921 configuration~b52.4! and real data. Each do

represents the value ofN̄(l i , j )2N(l i , j ). Index i enumerates the
eigenvalues,i 51, . . .,32768, andj is the configuration number,j
51, . . .,50. The 50 plotted configurations were chosen arbitrar
Only every 500th eigenvalue is shown.
1-3
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T. GUHR, J.-Z. MA, S. MEYER, AND T. WILKE PHYSICAL REVIEW D59 054501
negative eigenvalues@18#. Translational invariance in the
bulk allows us to calculate observables from running aver
over overlapping intervals for each configuration. We cho
an overlap of 90% for two consecutive intervals. Then
average over all configurations. This improves the statis
of the result considerably.

2. Configuration unfolding

We now unfold each configuration separately. Obse
ables are then calculated for each configuration by runn
spectral average. Thereafter we average over the ensem
The basic characteristics are already obtained for one si
configuration, though the statistics is considerably improv
by ensemble averaging. This is in the same spirit as it w
done in spectra of nuclei@24# and complex atoms@25#. These
spectra were unfolded for each nuclei or atom separat
Then observables were calculated as described above,
first taking the spectral and then the ensemble average
this case the ensembles consist of nuclei or atoms of diffe
types.

Configuration unfolding is, in contrast to ensemble u
folding, not a unique procedure. One has to find either fits
the average staircase function or to smooth it in some wa
priori, there is no criterion whether the numerical estima
Nave(l) is close to the real one or not. Thus, we use th
different approaches and carefully compare them with
another to eliminate as many sources for mistakes as pos
and to obtain consistent results.

First, we fit N(l) to a polynomial of degreen,

^N~l!&5Npoly~l!5(
j 50

n

aj l j , ~7!

where n is a small integer,n52, . . . ,5. This approach is
motivated by the fact that almost all physical systems
known to have a level density which is as smooth as a p
nomial. In our case this ansatz is supported by pertuba
calculations. Strong coupling expansions for SU~2! with
staggered fermions have been performed@26# and, further-
more, 1/Nc expansion of the QCD level density@27#, both
suggesting a smooth level density. The former gives a se
circle whereas the latter explicitly predicts a polynomial
crease.

Second, we use the Gaussian method which was o
nally developed by Strutinsky@28#. One replaces the
d-functions in Eq.~3! by Gaussian functions with a widthD
which yields a smoothed staircase

ND~l!5E
2`

l

dl8 (
i 5min

max
1

ApD
e2~l82l i !

2/D2
. ~8!

The summation runs from the smallest eigenvaluelmin to the
largest eigenvaluelmax in the interval under consideration
The limit D→0 restoresd–distributed eigenvalues, wherea
the fluctuations are smeared out for finiteD. The optimal
parameterDopt is found by ax2–fit of ND(l) to N(l). Then
we identify
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^N~l!&5NDopt
~l! . ~9!

Third, we perform a local unfolding by calculating th
unfolded eigenvaluesj i directly with the formula

j i 112j i5
l i 112l i

Di
, ~10!

with local mean level spacing

Di5
1

2k11 (
j 5 i 2k

i 1k

~l j 112l j !. ~11!

Here 2k is the number of consecutive level spacings over
running average is performed.

Whatever approach one decides to use, a necessary
dition is that on the unfolded scale the average numbe
levels in an interval of lengthL should equal this length. This
is a very important requirement because we are also in
ested in very large energy scales. This assures that the s
trum on the numerically constructed dimensionless scaj
has mean level density unity. Consider the interval@a,a
1L# which containsna(L) eigenvalues. Spectral averag
^ . . . & and ensemble average( . . . ) have to yield

^na~L !&5L. ~12!

In Fig. 3, the difference between the calculated mean num
of eigenvalueŝ na(L)& and L is plotted as a function ofL.
For the Gaussian method the difference appears to be ze
all scales. While it is small and does only appear at largL
for polynomials fits withn>3, strong deviations from the
zero line already appear at smallL for n52. In the case of
local unfolding, the differenceL2^na(L)& is positive for
small k, i.e. there are on average less levels in a given in
val than there should be. For growingk, it becomes negative
with ever stronger deviations from the flat line. The avera
ing interval lengthk for which the difference equals zero
k'100 for V5164. For other lattice sizes this averagin
interval is slightly smaller. We take this as the optimal p
rameter for this approach. From Fig. 3 we learn that

FIG. 3. Value of the quantityL2^na(L)& for the three unfold-
ing approaches on a 164 lattice. From left to right the polynomial
Gaussian and local unfolding is shown. In the left plot diamonds
data forn52 and the cross and circles aren53 andn54. In the
right plot the data points from top to bottom correspond to an
eraging interval ofk520, 100, 300, and 900, respectively.
1-4



s

fo
v

c
d

p
as

it
e
a

es

in

he
th
e
h
in
he
th
o
w

ct
e

us
ar
e
x

be-
eed

ing
less
p-
As
ia-

ility
-

as

pe

ig.
s is

the
eory
ing

-
o

er

cale
the

STATISTICAL ANALYSIS AND THE EQUIVALENT OF . . . PHYSICAL REVIEW D 59 054501
necessary condition~12! is fulfilled only for the Gaussian
approach, polynomial fit withn>3 and local unfolding with
k'100 forV5164, all other choices of the parameters mu
be rejected.

It should be mentioned that a new artificial scale both
local and Gaussian approach is introduced, namely the a
aging interval lengthk and the widthD, respectively. There-
fore, one should be cautious in the interpretation of effe
seen on scalesL larger than current value of the correspon
ing parameter. In units of the mean level spacingD we find
a width of the Gaussian asD/D'100 at a 164 lattice. On the
other hand, both approaches have the advantage that no
ticular function for the average level density has to be
sumed.

We checked all our numerical unfolding approaches w
the spectrum of a very different system. We used the sp
trum of quantum chaotic billiard that was simulated in
microwave experiment. In billiards, the Weyl formula giv
an analytical expression for the mean level density@29#.
With our phenomenological approaches, we indeed obta
quantitatively the same results.

3. Windowing

Ideally, an unfolding procedure should only remove t
global variations of the spectral density, i.e., in our case
overall behavior seen in Fig. 1. For reasons which will b
come clearer later, it is difficult to numerically distinguis
the global variations from the local fluctuations. This is
particular the case for data of large lattice size. In ot
words, we might have removed too much by some of
unfolding procedures, while we might have removed t
little by others. This will be discussed in great detail belo
especially in Sec. III E.

One has to ensure that any deviations seen in the spe
statistics are not due to global variations in the average d
sity which were not removed adequately. One way is to
different unfolding approaches and compare the results c
fully. Another way is to take only a small window of th
spectra in which the global variation of the density is e
pected to be small. Thus we choose an interval@l,l1dl# and
calculate the ensemble averaged mean level spacingD for it.
We then rescale the eigenvalues in this interval as

j i5l i /D, l,l i,l1dl. ~13!

FIG. 4. Nearest neighbor distribution, solid line is the Wign
surmise and the bars represent the lattice data.
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This is done in the same manner as in@8# where the micro-
scopic region was considered. However, it is not clear
forehand that a scale in the spectra, if any, does not exc
the interval lengthdl. Unfolding, if done correctly, allows to
make investigations to much larger scales.

This approach is closely related to ensemble unfold
defined above. Indeed, the results coincide, but with a
statistical significance by only rescaling. By using this a
proach, we intended to avoid any unfolding procedures.
we will see later, there are a slight, but still systematic var
tions of the spectral density within the small window.

B. Nearest neighbor spacing distribution

The nearest neighbor spacing distributionP(s) probes the
fluctuations on short scales in the spectra. It is the probab
of finding the distances between adjacent level on the un
folded scale. It contains all correlations of orderk>2. In the
case of completely uncorrelated levels which is referred to
Poisson regularity@1#, it is given byP(s)5exp(2s). In the
case of GSE type correlations, Wigner surmised the sha

P~s!5
262144

729p3
s4expS 2

64

9p
s2D , ~14!

which is very close to the exact GSE result. As shown in F
4, the data is in perfect agreement with the prediction. Thi
as well true for the large lattice,V5164 ~left part!, as for the
small lattice,V544 ~right part!. The spacing distribution of
the intermediate lattice sizes are not distinguishable from
both shown. We have complete agreement between th
and lattice data for any choice of lattice size and coupl
constant.

C. Two-point spectral correlations

In an interval of lengthL in units of the mean level spac
ing, the mean number of eigenvalues should be equal tL;
see Eq.~12!. The variance of this number is defined by@30#

S2~L !5^„L2na~L !…2&. ~15!

Thus, an interval of lengthL contains on averageL

FIG. 5. Integrated two-point functions number varianceS2(L),
spectral rigidityD3(L) for small L on a 164-lattice. The solid line
represents the RMT predictions and the dots the data. On this s
the presented data points do not depend on unfolding. Note
difference in the scale of theL axes betweenD3(L) andS2(L).
1-5
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T. GUHR, J.-Z. MA, S. MEYER, AND T. WILKE PHYSICAL REVIEW D59 054501
6AS2(L) levels. For uncorrelated Poisson spectraS2(L)
5L. RMT predicts for the number variance stronger cor
lations, namelyS2(L); logL.

Another important quantity is the spectral rigidityD3(L),
defined as the least square deviation of the staircase fun
from the straight line@30#,

D3~L !5K 1

L
minA,BE

a

a1L

dj„N~j!2Aj2B…2L . ~16!

Since it can be expressed as an integral over the num
variance

D3~L !5
2

L4E0

L

dr~L322L2r 1r 3!S2~r !, ~17!

it is smoother thanS2(L).
The number variance can be expressed as an integr

the two-point cluster functionY2(r ) @30#, which depends for
translational invariant spectra only on the differencer 5uj2
2j1u between two levels atj1 andj2 ,

S2~L !5L22E
0

L

~L2r !Y2~r !dr. ~18!

The cluster function is related to the two-point correlati
function X2(r ) which measures the probability density
find two levels at a distantr by X2(r )512Y2(r ). In con-
trast toP(s), these two levels are not restricted to adjac
ones.

In Fig. 5, number variance and spectral rigidity for sca
up to L520 andL5100, respectively, are shown. Lattic
data and RMT predictions agree remarkably well, even
oscillations inS2(L) are accurately reproduced. Naturall
previous analyses@11# with smaller data sets have less s
tistical significance. Two-point cluster and correlation fun
tion which usually are not accessible in data analysis
shown in Fig. 6. Again, the agreement is impressive.

Beyond this scale there are considerable deviations
D3(L) as well as ofS2(L) from RMT predictions which
depend on the unfolding procedure used. We mention tha
general grounds one can show that any scales inS2(L) and
D3(L), say LS and LD, respectively, are related byLD:LS

FIG. 6. The two-point correlation functionX2(r )~left! and the
cluster functionY2(r ) ~right! as a function ofr, compared with the
GSE predictions. The result is independent of the unfolding
proach.
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54:1, or so@1#; see Fig. 5. Thus, any deviations from RM
behavior appear at smallerL in S2(L) as compared to
D3(L).

If we unfold with the ensemble staircase functionN̄(l),
we obtain the following results. The number variance can
seen in Fig. 7. Data for different lattice sizes and differe
gauge couplings are shown in comparison to the RMT p
dictions for some regions of the spectra. We find that
point where the deviation sets in, scales with the square
of the lattice volume,

lRMT

D
'CAV. ~19!

The numerical constantC is approximately given byC
'0.3. This should be compared with the result obtained
@18# for the microscopic region. There, the scalin
l RMT /D;0.3 . . . 0.7AV was found. This is independent o
the region of the spectra we consider and of the coup
strengthb. This is shown in Fig. 7. There different regions
the spectra are considered, each corresponding to diffe
values ofr̄(l); see Fig. 1. The results are the same. Furth
more, the deviation points for differentb appear to coincide,
whereas the local average density depends on the gauge
pling, r̄(l)5 r̄(l,b); see Fig. 1. The scaling relation~19!
can nicely be seen from Fig. 8, in which theL axes of Fig. 7
is rescaled withAV. We see that the crossover from RMT
non-universal behavior appears to be the same for all lat
sizes independent ofb. But the slope varies for differen
couplings and regions of the spectra. When we use wind
ing instead, we get the same results as obtained by ense
unfolding. But the data points scatter more compared to F
7 and 8.

The importance of a proper choice of the unfoldin
method becomes manifest as the above picture changes
tically if we unfold each configuration separately. As di
played in Fig. 9, the polynomial unfolding leads to an ove
shooting of the data over the predictions but further o
compared to ensemble unfolding, while in the Gaussian
well as in the local caseS2(L) saturates. Note the differen
scale compared to Fig. 7 and also the difference in sc
between number variance and spectral rigidity, as mentio
above. The result of the polynomial approach does not
pend on the degreen of the polynomial. Furthermore we find
no scaling withAV for the deviations of polynomial unfold
ing; see Fig. 10. The deviation point appears to be the s
for different lattice sizes. The saturation of the small lattic
is due to the limited number of eigenvalues in the conside
energy range. The same picture arises for the number v
ance: overshooting for the polynomial, saturation for Gau
ian and local approach. The general tendency of these re
are already obtained for each configuration separately,
the data points scatter. After averaging over all configu
tions the scattering becomes much smaller; see Figs. 5 an

D. Higher order spectral correlations

The wealth of data allows us to go beyond a previo
analysis@12# of higher moments of the eigenvalue partitio

-

1-6
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FIG. 7. Deviations from RMT predictions for different lattices sizesV and gauge couplingsb. Shown are different regions of th
spectrum as indicated in the upper left part of the plots.

FIG. 8. Deviation from the RMT predictions rescaled with the square root of the volume, to be compared with Fig. 7. The cr
between RMT and non-universal behavior is at (lRMT /D)V21/2'0.3.
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mk~L !5^„L2na~L !…k&. ~20!

We notice thatm2(L)5S2(L). The skewness and the exce
@30# are defined by

g1~L !5m3~L !m2~L !23/2 ~21!

and

g2~L !5m4~L !m2~L !2223, ~22!

FIG. 9. Deviations of the spectral rigidityD3(L) and number
varianceS2(L) from the RMT-predictions on a 164-lattice for large
L. From top to bottom the results for polynomial with degreen
53, Gaussian and local unfolding with averaging interval len
k5100 are shown. Note the different scale on the abscissa c
pared to Fig. 5.
05450
respectively. The comparison of RMT predictions with la
tice data for these both quantities in Fig. 11 again shows v
good agreement.

The measuresg1(L) and g2(L) only contain a small
amount of information of the spectral correlations. Mor
over,g1(L) andg2(L) also involve lower order correlations
g1 is a combination of the two- and the three-point co
relator,Y2(r ) andY3(r 1 ,r 2), andg2 involves in addition the
four-point correlatorY4(r 1 ,r 2 ,r 3). The representation of the
moments in terms of integrals over the correlators reads

m3~L !5L26E
0

L

~L2r !Y2~r !dr

26E
0

L

dr1E
0

L2r 1
dr2~L2r 12r 2!Y3~r 1 ,r 2!

~23!

and

m4~L !5L2~14212L !E
0

L

~L2r !Y2~r !dr

112F E
0

L

~L2r !Y2~r !drG2

136E
0

L

dr1E
0

L2r 1
dr2~L2r 12r 2!Y3~r 1 ,r 2!

224E
0

L

dr1E
0

L2r 1
dr2E

0

L2r 12r 2
dr3

3~L2r 12r 22r 3!Y4~r 1 ,r 2 ,r 3!. ~24!

m-
FIG. 10. Comparison between RMT and lattice data by unfolding each configuration separately with a polynomial.
1-8



el
ow

ns

i-

ee

o

s
in
e

b
M
-
a

or
a

-
e.
m

it
ile
s.
ith

his
m-

T
e

old
are

un-

ion
oce-
an

sta-
ial
,
cales
hav-

tes
es
ike
evia-
ve

ity

eal

w

t
pr

are

STATISTICAL ANALYSIS AND THE EQUIVALENT OF . . . PHYSICAL REVIEW D 59 054501
Obviously, by analyzingg1(L) andg2(L), one cannot easily
estimate to what extent the three- and the four-point corr
tors themselves obtained from the lattice calculations foll
the predictions of RMT.

Here, the three- and the four-point cluster functio
Y3(r 1 ,r 2) and Y4(r 1 ,r 2 ,r 3) are written as functions of the
argumentsr i( i 51,2,3) which are defined terms of the orig
nal argumentsj i( i 51,2,3,4) by

r 15j22j1 , r 25j32j2 , r 35j42j3 . ~25!

We constructed from the data the two-point and the thr
point correlation functionsX2(s) andX3(s1 ,s2) and the cor-
responding cluster functionsY2(s) andY3(s1 ,s2). Here, for
convenience, we redefined the arguments for the three-p
correlators as follows:

s15j22j15r 1 , s25j32j15r 11r 2 . ~26!

The results forX3(s1 ,s2) and Y3(s1 ,s2) are plotted with
error bars in Fig. 12 for some given values ofs1 . The results
do not depend on unfolding. In the construction of the
correlators, we first performed a spectral average by us
the translational invariance due to unfolding, and then av
aged over the ensemble. The errors forX3(s1 ,s2) and
Y3(s1 ,s2) were estimated as the variance of the ensem
fluctuations. Once more, very good agreement with the R
predictions forX3(s1 ,s2) is found, apart from a small sys
tematic deviation which we believe can be understood
follows. From the relation betweenX3(s1 ,s2) andX2(s)

X3~s1 ,s2!5Y3~s1 ,s2!221X2~s1!1X2~s2!1X2~s12s2!,
~27!

one has

X3~s1 ,s2!us2→`5X2~s1!. ~28!

Therefore, even a small point-deviation of the two-point c
relator ats1 from the theoretical predictions can result in
systematic deviation of the whole curveX3(s1 ,s2) versuss2
for this givens1 . For Y3(s1 ,s2), the quality of the agree
ment with RMT is only slightly reduced, but still remarkabl
In addition to the systematic deviation, one can see so
random fluctuations around the theoretical curves. This

FIG. 11. Integrated three-point and four-point function, ske
nessg1(L) and excessg2(L), respectively, as defined in Eqs.~21!–
~24!. The lattice size isV5164, as in Fig. 5. The solid line represen
the RMT predictions and the dots the data. On this scale the
sented data points do not depend on unfolding.
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becauseY3(s1 ,s2) is the disconnected correlator, and
should represent the true three-point correlation, wh
X3(s1 ,s2) also contains the two- and one-point function
They play a dominate role and are in good agreement w
the corresponding GSE predictions. We notice that t
analysis was only possible due to the extremely higher nu
ber of levels available.

E. Qualitative discussion of the deviations
for configuration unfolding

Using ensemble unfolding, we find deviations from RM
behavior, which scale with the square root of the volum
according to the theoretical predictions. But as we unf
each configuration separately this effect vanishes. There
still deviations left but none of them show aAV scaling law.
Moreover, we have a dependence of the results on the
folding approach.

Concerning local and Gaussian unfolding, an explanat
seems to be easy at hand. As mentioned above, both pr
dures have an intrinsic, artificial, scale. In units of the me
level spacing it has the valueL'100 for V5164 in both
cases. This is approximately where the saturation of the
tistics seen in Fig. 9 sets in. We conclude that this artific
scale causesS2(L) and D3(L) to saturate. In other words
both approaches are not capable to allow statements at s
L*100. Nevertheless, both approaches do not show a be
ior as shown in Figs. 7,8 forL,100.

On the other hand, the polynomial unfolding also devia
from RMT predictions; see Fig. 10. As this approach do
not contain an additional scale, we can rule out effects l
the one discussed above. The question is, whether the d
tions in Fig. 10 are due to a Thouless energy or if they ha
another origin.

The fluctuating part of the integrated level dens
N fluc(l) should be of orderO(1), asmentioned above. In
the upper part of Fig. 13 the difference between the r

-

e-

FIG. 12. The three-point correlation functionX3(s1 ,s2)~left!
and the cluster functionY3(s1 ,s2)~right! as a function ofs2 for
different values ofs150.70, 1.40 and 2.55~from top to bottom!,
compared with the GSE predictions. As in Fig. 6 the results
independent of the unfolding approach.
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staircase function and the smooth polynomial staircase fu
tion, N(l)2Npoly(l), for one specific configuration is plot
ted. This picture remains qualitatively the same whate
configuration is chosen. The polynomial fits have a syste
atic deviation from a smooth behavior larger thanO(1). The
difference between the ensemble staircase and polynomi
N̄(l)2Npoly(l) is shown in the lower part of Fig. 13. A
polynomial of degreen53 gives the same result asn54. To
obtain a better insight in this obviously not universal beh
ior, we calculate the power spectrum

F~ f !5E
2`

`

dl e2p i f lK~l1 ,l2 ,l!
d

dl
„N~l!2Npoly~l!… .

~29!

By construction, the derivative in the integrand gives t
fluctuations of the level density. The window functio
K(l1 ,l2 ,l) has to be introduced because we only hav
finite interval of eigenvalues in the Fourier transform ov
the whole real axis. It is zero outside the intervall1<l
<l2 . The choice is not unique inside@31#. Thus, the Fourier
transform is a convolution of the transforms ofN(l)
2Npoly(l) andK(l1 ,l2 ,l). In order to reduce the influenc
of the Fourier transform ofK(l1 ,l2 ,l) on the results as fa
as possible, we use a triangle window@31#. The result is
shown in Fig. 14. In the right part one sees the Fourier tra
form of the ensemble averaged density. Only the very fi
peak is left, both for polynomial of degreen54 andn55.
The latter is reduced in amplitude. On the left side the tra
form of an arbitrary chosen configuration is plotted. The fi
peaks are reduced in amplitude again forn55, whereas the

FIG. 13. Difference between the fitted polynom like stairca
function and the real staircase function for one arbitrarily cho
configuration~upper part!. The lower part shows the difference b
tween the staircase found by ensemble averaging and a polyno
to it. The degrees of the polynomials aren54,5. Polynomial of
degreen53 gives the same result asn54. The plotted interval
contains approximately 16000 eigenvalues.
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remaining ones are the same for both degrees. We conc
that only the first peak, corresponding to the long wave p
of Fig. 13, is common to all configurations. All others fluc
tuate from configuration to configuration.

We conclude that the average level densityrave(l) and
thus the average integrated level densityNave(l) consist of
two parts, namely a very smooth polynomial-like part a
another, non-universal, part,

Nave~l!5Npoly~l!1Nosc~l!. ~30!

We stress again that the existence of a polynomial-l
smooth part is suggested by pertubative and 1/Nc expansions
of the QCD level density@26,27#. It is expected to be gov-
erned by the available phase space: for free fermions
spectral density is given at ulu→` by r ave(l)
5NcVulu3/4p2 @32#, whereNc is the number of colors. This
also holds in a 1/Nc expansion of the interacting theory o
scales which are large compared to the hadronic scale@27#.
This is the region we investigated in the spectra, as the
genvalues are given in units of the inverse lattice spacing
a21'10 fm21'2 GeV; see Figs. 1 and 13. This is wh
we tried to approximate the average level density by a fu
tion which is as smooth as a polynomial.

The additional structure of the level density appears
have similarities to oscillations; see Figs. 13 and 14. Th
we refer to it as ‘‘oscillatory part,’’Nosc(l). This oscillatory
part explains the different behavior ofD3(L) andS2(L) for
largeL for different unfolding methods. The polynomial un
folding is clearly unable to remove the oscillations and fi
only Npoly(l). Thus, the oscillatory part is still present in th
unfolded spectrum. The presence of these oscillations le
to values forD3(L) larger than predicted by RMT, because
fit to a straight line can only be done in a less accur
manner. In contrast to that, the Gaussian and the local
folding is capable to fitNpoly(l) and part ofN osc(l). How-
ever, it is not clear whether the fit to the oscillatory part
done completely or if, on the other hand, it does not smo
out part of the universal fluctuations, i.e. overfits the da
points. But, because of the saturation ofS2(L) andD3(L),
see Fig. 9, we think that probably the latter happens.

However, as argued above, since we expect the phys
density to be as smooth as a polynomial, the oscillatory p

e
n

fit

FIG. 14. Square of the Fourier transform of the oscillatio
shown in Fig. 13, but ford„N(l)2Npoly(l)…/dl instead ofN(l)
2Npoly(l), as given by Eq.~29!.
1-10
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FIG. 15. Number varianceS2(L) and spectral rigidityD3(L) for polynomial unfolding with the withdrawal of the long wave leng
oscillations, as explained in the text. In each plot the data corresponds from top to bottom to a cut off cut50, 1.5(2a), 3.0(2a), 7.0(2a), and
10.0(2a), respectively.
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is likely to be a lattice artifact. This is suggested by Figs.
and 14 which show that these oscillations live on the scal
the inverse lattice spacing 1/a. As ulu cannot be arbitrarily
large in lattice gauge theory, due to an ultraviolet cutoff
momentum for finite lattice spacinga, the increase of the
density is disturbed by lattice artifacts. For the large lattic
i.e., V5164, the deviations due to lattice artifacts set in
approximately the same scale as the expected equivalen
Thouless energy. This can be seen from theAV scaling of
the smaller lattices. A rough estimate giveslRMT /D'30 for
V5164 for S2(L). Therefore one should be careful with th
determination of the deviation point for large lattices in t
bulk of the spectra. After removing this part from the da
we find for S2(L) reasonable agreement with the RMT pr
diction up to at leastL'300 and with some uncertaintie
even toL'500; see Fig. 15. Because of the complica
structure of the average level density it is not possible
make any statement beyond this scale. In chaotic billia
so-called bouncing ball modes generate effects which
similar to the ones here@29#. In that case, however, an an
lytical prediction for the oscillatory behavior was at han
Such a result is also highly desirable in our case. It would
needed to furnish our phenomenological removal of the
cillations with a theoretical justification.

In any case, we may use the information displayed in F
14 to phenomenologically remove the oscillatory part. W
cut the power spectrum at a certain interval, back transfo
the remaining peaks in the frequency interval@0,f cut# and
subtract the smooth oscillatory part of the integrated le
density obtained in this manner. We do this for each confi
ration separately. This procedure changes the result of
statistical analysis in a crucial way, as can be seen from
15. There, the results for spectral measures are shown
different choices off cut. Because only the very first peak
common to all spectra whereas higher frequencies appe
be specific for each configuration, a choice off cut
.3.0(2a) is actually too large. This manifests in a saturati
05450
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of the statistics in Fig. 14 forf cut57.0(2a),10.0(2a). A
cutoff of f cut51.5, . . .,3.0(2a) seems to be the best choic
but we are not able to give an exact value. This figure a
shows a comparison betweenb52.4 and b52.5 for V
5164. Both values ofb give almost the same result. Th
procedure also removes the slight differences seen in Fi
for the polynomials forL*200. From all this, we conclude
that the deviations in Fig. 10 are due to a non-polynom
like part in the average level density and not due to
equivalent Thouless energy.

A possible way to circumvent the problems encounte
by lattice artifacts is windowing as discussed in Sec. III A
However, this works only if the size of the windowsdl is at
least so small that the oscillations of Fig. 13 are not imp
tant, i.e.,dl!a21. Another way might be ensemble unfold
ing, Sec. III A 1. As the lattice artifacts are seen in ea
configuration as well as in the average integrated level d
sity this approach might remove the oscillations. But it is
no means clear if it really does, especially for large inter
lengths. As both approaches give similar results for sm
lattices,V<104, for intervalsL&20, we conclude that the
artifacts are not important on these scales. This is suppo
by the observations that deviations due to them set in aL
'25 for polynomial unfolding, independently of the lattic
size; see Fig. 10. Thus, these artifacts become importan
analysis of larger lattices, i.e.V5164, and for even larger
ones in future examinations.

From all this we conclude that we do not see an equi
lent of a Thouless energy if we unfold each configurati
separately. This is in complete contrast to the results gai
by ensemble unfolding. The former surely removes the fl
tuations in Fig. 2, whereas the latter does not. We concl
that this fluctuation with respect to the ensemble already c
tains the information needed to determine the Thouless
ergy. After removing this information it seems that there
no further information in the spectra, i.e., we find agreem
with RMT on huge scales.
1-11
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IV. SUMMARY AND DISCUSSION

After summarizing our results in Sec. IV A, we discu
our findings in Sec. IV B.

A. Summary

We presented a detailed analysis of statistical proper
of complete eigenvalue spectra for staggered fermions
SU~2! lattice gauge theory for various couplings and latt
volumes. Unfolding the data posed certain difficulties wh
are not encountered in other systems. The staircase fun
found by an average over the ensemble differs in most c
from the smooth staircase of one specific configuration. T
deviations are as large as^N(l)&2N̄(l)5O(101) for V
5164. Varying the unfolding approach leads to different r
sults for large scales. In particular, there is a drastic diff
ence between ensemble and configuration unfolding.

Using ensemble unfolding, we find a range of validity
RMT, giving lRMT /D5CAV. The numerical constant is ap
proximately given asC'0.3. which is compatible with the
result obtained in@18# for the microscopic region where th
scaling lRMT /D;0.3 . . . 0.7AV was found. The same re
sults are obtained if we use windowing, but with less sta
tical significance.

By unfolding each configuration separately, we do not
any scaling of this type. This procedure obviously remov
the fluctuations of the staircase function relative to the
semble average seen in Fig. 2. We notice that fluctuat
over the ensemble can already be observed in the integr
level density. But there are still deviations depending on
unfolding approach used. In particular there is an oversh
for polynomial unfolding at largeL. The reasons for this lies
in special features of the average level density, which c
sists of at least two parts: a smooth polynomial-like and
oscillatory part. Hence the Thouless energy is due to
fluctuations in the ensemble.

We want to clarify the difference in the notion of ergo
icity used in spectral analysis and in lattice calculations,
spectively. Concerning the analysis of spectra, a system
called ergodic if spectral and ensemble average yield
same results. It can be proven rigorously that random ma
ces have this property in the limit of large matrix dimensio
However, here we face a different situation. We emphas
that these issues do not affect the notion of ergodicity as u
in connection with lattice simulations. The latter is defin
by the requirement that the space of possible lattice confi
ration is explored reasonably fast by the simulation al
rithm. We emphasize that the time history of the spectra
not of importance for the calculation of the spectral obse
able of Sec. III, because it is only relevant that the confi
rations used, see Table I, are representative members o
ensemble, i.e., ergodicity in the sense of lattice simulation
fulfilled. This is ensured by our algorithms as described
Sec. II. Furthermore, this is supported by the observation
our results do not change if we take arbitrary subsets
configurations, only the scattering of the data points
creases.

Furthermore we analyzed the nearest neighbor spa
distribution, skewness and excess for smallL. Due to the
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large amount of data, our results achieved a quality ne
reached before. Due to translational invariance in the bulk
the spectra the general tendency for all of the observa
can already be seen for one specific configuration. Averag
over all configurations increases the statistical significanc
the results. The results for small valuesL considerably im-
prove the statistical significance of previous analys
@11,12#. To the best of our knowledge, we presented the fi
statistically highly significant analysis of bare two- and, im
portantly, three-point spectral correlators. Very good agr
ment between lattice data and RMT predictions is found.
find minor deviations for the three-point cluster functions.
our opinion, their origin are probably very small poin
deviations of the two-point functions.

B. Discussion

Some scenarios for the level statistics are shown in F
16. There the spectral rigidity is plotted. The two solid lin
represent Poisson and RMT behavior,D3(L);L and
D3(L); logL, respectively. The dashed lines represent sc
matically two different cases. Case ‘‘A’’ corresponds to
scenario known from systems with few degrees of freedo
The shortest periodic orbit in phase space sets a scale w
forcesD3(L) to saturate at a certainLA @33#. But by increas-
ing the degrees of freedom of the system, this scale beco
ever larger and is hard to be seen. As we may view lat
gauge theory as a many body problem or disordered sys
we do not expect to see this scale in the level statist
Therefore one should not be tempted to conclude that
saturation seen in Figs. 9,15 is the analogue of ‘‘saturation
fluctuation measures’’ which was observed in the ene
level statistics for classically chaotic systems and was in
preted by Berry in terms of shortest periodic orbits@33#.
Unlike in the case of quantum billiards where an analy
expression for the average spectral density exists,
Nave(l) that we obtained in our analysis was only a nume
cal result. Most likely all three approaches, i.e. Gauss, lo
and modified polynomial, fit also parts of the universal flu
tuations which shows up as a saturation of the statis
D3(L) andS2(L).

FIG. 16. Possible scenarios for the spectral rigidity. Plotted
the linear Poisson behavior and the logarithmic increase of
Gaussian ensembles~GE! as predicted by RMT, respectively. ‘‘A’’
correspond to a saturation due to shortest periodic orbits and ‘
to linear increase due the scale set by a Thouless energy.
1-12
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STATISTICAL ANALYSIS AND THE EQUIVALENT OF . . . PHYSICAL REVIEW D 59 054501
Another scenario is given by case ‘‘B’’ which lies be
tween Poisson and RMT behavior. It can arise in three
ferent physical situations@1#:

~1! Systems in few degrees of freedom between regula
and chaos. The spectral rigidity lies between the Pois
limit, which applies to regular systems and the RMT lim
which applies to chaotic systems, provided the scaleLA is
much larger thanLB .

~2! Disordered systems ind dimensions. The timetc for
the classical diffusion through the system of sizeLS

d where
LS is the size in each dimension determines an energy s

Ec5\/tc, ~31!

the Thouless energy. This in turn sets the scalelRMT /D
whereD is the single particle mean level spacing. For ene
separations in units ofD smaller than this scale, RMT fluc
tuations are seen. For larger energy separation, deviation
sketched in Fig. 16 occur.

~3! Many body systems such as nuclei, molecules or co
plex atoms. In the language of condensed matter phys
these systems are zero-dimensional. Consider the Ha
tonian of such a systemH5H01H1 whereH0 has a certain
property andH1 breaks this property. The influence ofH1 on
the statistics of the spectrum ofH0 is measured in terms o
the spreading width

G52p^H1
2&/D0 ~32!

where D0 is the mean level spacing ofH0 and ^H1
2& the

mean square matrix element ofH1 . In particular, ifH0 has
Poisson statistics andH1 RMT statistics the spectral rigidity
acquires the form of Fig. 16 andG sets the scalelRMT /D.

As discussed above, situation~1! is not likely to apply.
We emphasize that the Thouless energyEc and the spreading
width G defined in~2! and ~3! are closely related concept
Actually, in his original paper, Thouless@13# definedEc as a
special kind of spreading width. The precise relation betw
l RMT /D and Ec has been studied in great detail in th
framework of RMT@34#. We notice that the definition in~2!
which is most commonly used in condensed matter phys
relatesEc to dimensionality, whereasG is defined in zero
dimensions. Thus, the sheer existence of a scalelRMT /D can
imply, but does not necessarily imply that the deviation fro
RMT is related to a diffusion in ad dimensional disordered
system.

Recent theoretical studies aim at establishing@15–17# a
link between disordered systems and QCD. In these work
range of validitylRMT of applicability of RMT was consid-
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be determined by the pion decay constantFp and the chiral
condensateS,

lRMT;
Fp

2

SAV
. ~33!

In the microscopic region the mean level spacing isD
5p/(SV), so that Eq.~33! can be rewritten as

lRMT

D
;

Fp
2

p
AV. ~34!

The predicted scaling behavior was found very recently
the microscopic region@18#. There a crossover from RMT to
non-universal behavior was found with the scaling Eq.~34!.
As argued in Ref.@16#, a similar relation should also be see
in the bulk of the spectrum. Here, however, the mean le
spacingD is that of the bulk. In the present work, we hav
shown that, first, the scalelRMT /D exists in the bulk, and,
second, that it shows the predicted scaling behavior.
latter observation is a support for the ideas that link QCD
disordered systems and thus to a diffusion ind dimensions.
However, as outlined above, our findings are necessary
not sufficient for this conclusion. They do not rule out oth
physical mechanisms that lead to a spreading width or Th
less energy. This underlines the strength of our analysis
does not depend in any way on a model for this mechani
It is a self-consistent statistical method to find the sc
lRMT /D.

We hope that the identification of this scalelRMT /D can
help to improve our understanding of certain features
QCD as it may allow one to separate the stochastic nois
the short range fluctuations from the true dynamics of
QCD vacuum. Most desirably, these results could help
design effective models or to simplify the presently us
simulation algorithms in lattice gauge theories.
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