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Random matrix theoryRMT) is a powerful statistical tool to model spectral fluctuations. This approach has
also found fruitful application in quantum chromodynami@CD). Importantly, RMT provides very efficient
means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless
energy in complete spectra of the QCD Dirac operator for staggered fermions fr@ I8ttice gauge theory
for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the
Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which
suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze
several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us
to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is
discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation func-
tions.[S0556-282099)01901-3

PACS numbegs): 12.38.Gc, 05.50tq, 11.30.Rd, 64.60.Cn

I. INTRODUCTION erties, in particular chiral symmetry, o . It predicts level
repulsion between positive and negative eigenvalues which
It is now well established that random matrix theory results in a distinct behavior of the eigenvalue density and
(RMT) accurately models spectral fluctuations in an abun<correlations near the origin. It is possible to calculate spectral
dant variety of different systems, such as chaotic, disorderedorrelators analytically in the microscopic lini3-5], and to
and many-body systems; see the review in REf.In recent  compare the predictions of chRMT with complete spectra of
years, RMT has in addition been successfully introduced intehe lattice QCD Dirac operator on reasonably large lattices.
the study of certain aspects of quantum chromodynamicthdeed, remarkable agreement is folie-10] at the edge of
(QCD). The interest focuses on the spectral properties of théhe spectrum.
Euclidean Dirac operator. The eigenvalue equation under Sufficiently far away from the origin, however, the repul-

consideration reads sion of negative and positive eigenvalues should become un-
_ important. Therefore the chiral structure of the theory is not
ID[A] =N Al i, (1) expected to be of relevance in the bulk of the spectrum. This

] ] ] ) ~is the region we will address on in this work. By comparing
whereiD[A]=i4+gA%* is the massless Euclidean Dirac \yith Jattice data, it has already been shown that conventional
operator. The coupling constant is denotedgogind thet®  RMT properly models these fluctuations in the bulk
are the generators of the gauge group. The distribution of the11 12 1. It is important to go beyond these statistical
color gauge fieldsA* is given by the Euclidean QCD parti- analyses made so far in order to see to what scales RMT does
tion function. As these gauge fields vary over the ensembl@pply. The identification of such scales gives a fundamental
of gauge field configurations, the eigenvalues fluctuate aboygsight into a system. Investigations of this type have been
their average positions. The average spectral density is dgrerformed in great detail in disordered systems and in many-
fined as body systems. There, the Thouless eneggyor the spread-

ing width I determine the scalE./D whereD is the level
p(\)= < > 5(?\—)\k[A])> _ 2) spacing, ir? which the f_Iugtuations are of RMT ty[iE_S,lél].

K Beyond this scale, deviations from the RMT behavior occur,
see Ref[1] for a detailed discussion and further references.
The average has to be performed over all gauge field con- Recently, theoretical studigd5-17 established a link
figurations. between disordered systems and QCD. The range of validity

In contrast with most other systems, however, there ar€f RMT, Aryr, Was introduced as an equivalent of a Thou-
two different regimes in QCD spectra which can be ad-less energg,. A scaling\ gyt /D \V was proposed where
dressed in an RMT approach, the microscopic region and th¥ is the four-volume of the system. Indeed, such a scaling
bulk region. Since the Dirac operator only couples states obehavior was found very recently in the microscopic region
opposite chirality, the eigenvalues are pairwise positive anfi18] for deviation from RMT behavior. As argued ji6] a
negative. This is the reason why two types of spectral fluceorresponding effect should also be seen in the bulk of the
tuations can be distinguished, namely spectral fluctuations iapectrum. This is what we will investigate.
the microscopic limit near zero virtualith=0, and in the The identification of this scalagyt/D in QCD spectra
bulk of the spectrum. could lead to an improved understanding of certain features

Concerning the microscopic region, chiral random matrixof QCD and allows us to separate the stochastic noise of the
theory (chRMT) [2] incorporates the global symmetry prop- short range fluctuations from the true dynamics of the QCD

A
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vacuum. Eventually, it could be possible to set up effective TABLE I. Lattice parameters and statistical analysis of the com-
models or simplify the presently used simulation algorithmsplete spectra of the Dirac operator.

in lattice gauge theories. In this work, we search for such &
universal scale\gy/D in the bulk region by analyzing lat- 8 L Configurations Nmin Tint

tice data. In c_ontrast to the microscopic region., the.bulk of 18 8 1999 0.00298) 0.697)
the spectrum is expected to have a translation invariant ana- 4 9979 0.069%) 1.31)
logue of the Thouless energy. We emphasize that our analy- 6 4981 0'012@ 0'6%)
sis is self-consistent. Advantageously, it does not depend on 8 3896 0'0040(8) 0'71(6)
any model that aims at an explanation for the occurrence of 10 1416 0.0016(42) 0'7(1)
this universal scale. ' :
The high amount and quality of the data sets which ex- 22 6 5542 0.0293) 1.72)
ceed the existing ones by far enable us to considerably ex- 8 2979 0.008€L) 1.22)
tend the energy range for our analysis. Moreover, the wealth 24 16 921 0.00399) 123
of data makes it possible to directly address bare correlation 2-° 8 576 0.19M) 8(3)
functions which cannot be analyzed in most systems. Fur- 16 543 0.01€2) 10(4)

thermore, in doing so we discuss some technical aspects,
which are of general interest for the investigation of spectral
fluctuations. average level density and the integrated average level den-
This paper is organized as follows: In Sec. Il the datasity, see Eq(3), for a 16, i.e.L=16a, lattice are shown. It
under investigation is presented. A detailed analysis of thshould be pointed out that due to tM#2=32768 distinct
statistical properties is given in Sec. Ill. This includes theeigenvalues of each configuration there are millions of eigen-
introduction of the numerical unfolding approaches, a statisvalues at our disposal. We used two different values of the
tical analysis of the nearest neighbor spacing distributiongauge coupling3= 4/g> where the weak coupling regime of
two-point spectral correlations and higher order spectral corSU(2) sets in and where most of the scaling test have been
relations. Deviations from the RMT predictions are foundperformed so far. Finally, the chiral condensate was obtained
and interpreted. Summary and discussion are given in Seby fitting the spectral density and extractip¢0). Ourfind-
V. ings[19] are in rough agreement with the values obtained by
Hands and TepdR3] for the same simulation parameters in
SU(2) but only the 20 smallest eigenvalues have been com-

Il. COMPLETE DIRAC SPECTRA puted by these authors.

IN SU(2) GAUGE THEORY

The computation of large ensembles of complete spectra
of the Euclidean Dirac operator for staggered fermions in lll. DATA ANALYSIS
SU(2) gauge theory has recently been performed REJ]
expanding the numerical work df20]. In lattice gauge
theory simulations one generates a sequence of gauge fi
configurations distributed according to the Boltzmann
weight. On each of the gauge field configurations the eigen
value equatior(1) is solved numerically on the lattice and a
distinct partition of eigenvalues is obtained. The lattices hav
the sizeV=L* wherelL denotes the length of the Euclidean
box with a lattice spacing. Parameters and statistics of the
simulation are summarized in Table I. The choice of(3U
as the gauge group implies that every eigenvaluelfofis
twofold degenerate due to a global charge conjugation sym-
metry. The random-matrix ensemble for this situation has 4,
symplectic symmetry and is referred to as chiral Gaussian
symplectic ensemble(chGSE [21,1]. In addition, the
squared Dirac operator D? couples only even to even and 50
odd to odd lattice sites, respectively. Thuspp? hasV/2
distinct eigenvalues. We use the Cullum-Willoughby version

In this section we give a detailed analysis of the data
infroduced in the previous section in the bulk of the spec-

m. We start with a description of the numerical unfolding
approaches and their properties in Sec. lll A. After a short
discussion of the nearest neighbor distribution in Sec. Ill B,
we present data for spectral two-point correlations at large
Scales in Sec. Il C. From this we identify the equivalent of a
Thouless energy. Furthermore we discuss higher order corr-
elators, in particular three-point correlations in Sec. Il D. A

p(N)

of the Lanczos algorithmi22] to compute the complete ei- 0

genvalue spectrum of the sparse Hermitian mati®? in 1 2 3 4

order to avoid numerical uncertainties for the low-lying ei- N (2a)" N Qay"!

genvalues. There exists an analytical sum rule;- Bf)

=4V, for the distinct eigenvalues of D2 [20]. We have FIG. 1. Average level density(\) for =2.4 andB=2.5 (left
checked that this sum rule is satisfied by our data, the largesiot) and integrated average level densiy\), see Eq.(3), for
relative deviation was about 16. B=2.5(right plot). The eigenvalues are given in units of the inverse

Examples of the spectra are shown in Fig. 1, where théattice spacing (2) 1. The bin size in the left plot is 0.0163 1.
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gualitative explanation of deviations from RMT predictions
which are not due to the Thouless energy is given in Sec.
I E.

40

20

A. Unfolding

As RMT is capable of making predictions for the fluctua-
tions on the scale of the mean level spacing, one has to
remove the influence of the level density by unfolding the
spectra. The cumulative spectral function -20

Nensemhle(/\)'N()\)
f=3
—t
RO N

VI2

A)_f_ d\’ 2 SN —N\), (3) -40

is the number of levels below or at the enengylt is fre- Nay!
quently referred to as staircase function. It can be separated
into an average pal,,{\), whose derivative is the level
density, and a fluctuating paty, (),

FIG. 2. Difference between the integrated level deng&)
averaged over all 921 configuratig8=2.4) and real data. Each dot
represents the value dﬁ()\i,j)—N()\i,j). Index i enumerates the
N(X)=Ngd M)+ Ngue(N). (4) eigenvaluesi=1, .. .,32768, and is the configuration numbey,
=1,...,50. The 50 plotted configurations were chosen arbitrarily.
The average part is determined by gross features of the sy®nly every 500th eigenvalue is shown.
tem and has to be removed. The fluctuating part is in all

relevant systems of ord€?(1) and contains the correlations spectral average. One uses the theoretical concept of ergod-

to be analyzed. After extraction of the average Pagi{\), icity to compare the RMT predictions with the experimental
it is unfolded from the spectra by the introduction of a di- results. In our case, however, the data consists of configura-
mensionless energy variable tions, i.e. forms an ensemble. Hence, questions related to

ergodicity arise not only for the calculation of observables,

&i=Nad \i). ) but also in the determination of the staircase function, i.e. in

In this variable, the spectra have mean level spacing umtthe unfolding procedure. We have in principle two very dif-
everywhere ' Yerent ways of unfolding our data: first, ensemble unfolding,
' a\,e()\)—N()\), i.e., we determine the smooth part of the
Upad é)=1, (6) staircase function by averaging over the ensemble, and sec-
ond, configuration unfoldingN,,d\)=(N(\)), i.e. we de-
where p,.d &) =dN,d £)/dE. However, the extraction of termine the smooth part of the staircase function for every
N..d\) from the data is non-trivial in our case because littleconfiguration separately. The results differ considerably,

is known analytically about the level density of QCD spec- N(A)#(N(A)) for most of the configurations. The en-

tra, particularly in lattice calculations. We thus have to resorygmpje averaged stawca&k{)\) for the lattice QCD Dirac
to phenomenological unfolding procedures. Faulty unfolding
leads to wrong results, especially on such large energy Scalggerator is shown in Fig. 1. We fmksi()\) by dividing the

that we are interested in. In the subsequent Secs. Il A 1énergy range i bins with widthA\ and average the den-

A2 and Il A3, we discuss three different procedures Sity p(A,A+AM) for each bin over all conf|gurat|ons We then
used here, ensemble unfolding, configuration unfolding angalculate the staircase function a@$(\)=="1p(\; \;

windowing, respectively. +AN)AN, with A ,=\. In Fig. 2, the dlfference between the
ensemble averaged staircase function and the configuration
1. Ensemble unfolding wise averaged ones, fot=16* and 8=2.4, for 50 arbitrarily

In RMT one deals with an ensemble of matrices, where chosen conflguratlons is plotted. Each data point represents

the matrix elements of each member are chosen randoml)me d|fferenceN()\| )N\ j)), wherei enumerates the
Spectral observables predicted by RMT are calculated as e@{genvaluesn -,32768 and is the configuration num-
average over the ensemble. This ensemble average is deer 1= 50 We plot only every 500th eigenvalue.
noted by a ba¢ . . . ). Butobservables can also be calculated There are deV|at|ons of aboM(\)—(N(A))=0(10" in
as spectral average, i.e. one performs a running average ov€grtain energy ranges.
over|app|ng |nterva|$a a+ L] of |ength|_ in the Spectrum If the SpeCtra are unfolded USing the ensemble averaged
of one member. In order to distinguish it from ensemblestaircase functlom()\) observables should then also be cal-
average, we denote spectral averaging by angular bracketsilated as an ensemble average for a fixed value Bfit we
(...). In the limit of large matrix dimension both averages checked that our results do not depend\oim a wide range
are equivalenfl]. This property is called ergodicity. of the bulk. This property is called translational invariance. It
In most experiments, one measures one—preferably long actually not present in the microscopic region, where it is
—spectrum. Thus observables are usually calculated frordestroyed by point wise symmetry between positive and
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negative eigenvaluefl8]. Translational invariance in the 2 agoom | s Conss ocal
bulk allows us to calculate observables from running average ettt

over overlapping intervals for each configuration. We choose 1| .-
an overlap of 90% for two consecutive intervals. Then we , ,

average over all configurations. This improves the statistics ¥ 0 [~ === M IS os e
of the result considerably. :

2. Configuration unfolding

We now unfold each configuration separately. Observ- 0 300 600 O 300 600 O 300 600
ables are then calculated for each configuration by running L L L
spectral average. Thereafter we average over the ensemble. S
The basic characteristics are already obtained for one single FIG- 3. Value of the quantity. —(n,(L)) for the three unfold-
configuration, though the statistics is considerably improvedd approaches on a 1@attice. From left to right the polynomial,
by ensemble averaging. This is in the same spirit as it waSaussian and local unfolding is shown. In the left plot diamonds are
done in spectra of nucl§24] and complex atomi25]. These dgta forn=2 and the. cross and circles ame=3 andn=4. In the
spectra were unfolded for each nuclei or atom Separatel);'ght plot the data points from top to bottom correspond to an av-
- .“graging interval ok=20, 100, 300, and 900, respectively.
Then observables were calculated as described above, i.€.,
first taking the spectral and then the ensemble average. In NOODY =N+« (A 9
this case the ensembles consist of nuclei or atoms of different (N(A))= Aopl( ) - ©)

types. . . .
Configuration unfolding is, in contrast to ensemble un- 'Nird, we perform a local unfolding by calculating the

folding, not a unique procedure. One has to find either fits td!Nfolded eigenvalueg; directly with the formula
the average staircase function or to smooth it in some way. A

priori, there is no criterion whether the numerical estimated giﬂ_gizm, (10
N M) is close to the real one or not. Thus, we use three D;
different approaches and carefully compare them with one ith local mean level spacin
another to eliminate as many sources for mistakes as possib‘fve P 9
and to obtain consistent results. 1 itk
First, we fitN(\) to a polynomial of degree, D‘:2k+ T E ) (Aj+1—\)). (12)
j=i-
n
(N(M))=Npo(N) = 2 a (7) Here X is the number of consecutive level spacings over the
poly o running average is performed.

Whatever approach one decides to use, a necessary con-
wheren is a small integernzz, ...,5.This approach is dition is that on the unfolded scale the average number of
motivated by the fact that almost all physical systems ardevels in an interval of length should equal this length. This
known to have a level density which is as smooth as a polyis @ very important requirement because we are also inter-
nomial. In our case this ansatz is supported by pertubativested in very large energy scales. This assures that the spec-
calculations. Strong coupling expansions for (JUwith ~ trum on the numerically constructed dimensionless s¢ale
staggered fermions have been perfornigé] and, further- has mean level density unity. Consider the interval«
more, 1N, expansion of the QCD level densifg7], both ~ +L] which containsn,(L) eigenvalues. Spectral average
suggesting a smooth level density. The former gives a semi-. . .) and ensemble average . . ) have to yield
circle whereas the latter explicitly predicts a polynomial in-
crease. (ny(L))=L. (12)

Second, we use the Gaussian method which was origi- )
nally developed by Strutinsky[28]. One replaces the In Fig. 3, the difference between the calculated mean number

sfunctions in Eq.(3) by Gaussian functions with a width  of eigenvaluegn,(L)) andL is plotted as a function of.

which yields a smoothed staircase For the Gaussian method the difference appears to be zero to
all scales. While it is small and does only appear at ldrge
\ max for polynomials fits withn=3, strong deviations from the
NA()\)ZJ an’ o> P NS ORI (8)  zero line already appear at smallfor n=2. In the case of
- iShin \7A local unfolding, the differencé.—(n,(L)) is positive for

smallk, i.e. there are on average less levels in a given inter-
The summation runs from the smallest eigenvalyg to the  val than there should be. For growikgit becomes negative
largest eigenvalua ., in the interval under consideration. with ever stronger deviations from the flat line. The averag-
The limit A—0 restoress—distributed eigenvalues, whereas ing interval lengthk for which the difference equals zero is
the fluctuations are smeared out for finite The optimal k~100 for V=16 For other lattice sizes this averaging
parameten o is found by ay>—fit of Ny(A) to N(\). Then interval is slightly smaller. We take this as the optimal pa-
we identify rameter for this approach. From Fig. 3 we learn that the
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15 15
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B=2.5

1.0

P(s)

P(s)
=)
(=)
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L L

FIG. 5. Integrated two-point functions number variattL ),
spectral rigidityA;(L) for small L on a 18-lattice. The solid line
represents the RMT predictions and the dots the data. On this scale
the presented data points do not depend on unfolding. Note the
necessary conditiofil2) is fulfilled only for the Gaussian difference in the scale of the axes betweer (L) andS?(L).
approach, polynomial fit witm=3 and local unfolding with
k~100 forV=16" all other choices of the parameters mustThis is done in the same manner ag&) where the micro-
be rejected. scopic region was considered. However, it is not clear be-

It should be mentioned that a new artificial scale both forforehand that a scale in the spectra, if any, does not exceed
local and Gaussian approach is introduced, namely the avethe interval lengthoh. Unfolding, if done correctly, allows to
aging interval lengttk and the widthA, respectively. There- make investigations to much larger scales.
fore, one should be cautious in the interpretation of effects This approach is closely related to ensemble unfolding
seen on scalels larger than current value of the correspond-defined above. Indeed, the results coincide, but with a less
ing parameter. In units of the mean level spadihgve find  statistical significance by only rescaling. By using this ap-
a width of the Gaussian as/D~100 at a 16 lattice. Onthe  proach, we intended to avoid any unfolding procedures. As
other hand, both approaches have the advantage that no pare will see later, there are a slight, but still systematic varia-
ticular function for the average level density has to be astions of the spectral density within the small window.
sumed.

We checked all our numerical unfolding approaches with
the spectrum of a very different system. We used the spec-
trum of quantum chaotic billiard that was simulated in a The nearest neighbor spacing distributi®{s) probes the
microwave experiment. In billiards, the Weyl formula gives fluctuations on short scales in the spectra. It is the probability
an analytical expression for the mean level dengl9].  of finding the distances between adjacent level on the un-
With our phenomenological approaches, we indeed obtainetplded scale. It contains all correlations of order 2. In the
quantitatively the same results. case of completely uncorrelated levels which is referred to as
Poisson regularity1], it is given by P(s)=exp(-9). In the
case of GSE type correlations, Wigner surmised the shape

FIG. 4. Nearest neighbor distribution, solid line is the Wigner
surmise and the bars represent the lattice data.

B. Nearest neighbor spacing distribution

3. Windowing
Ideally, an unfolding procedure should only remove the 2621444 64 )
global variations of the spectral density, i.e., in our case the P(s)= 2073 s'exp — g S| (14

overall behavior seen in Fig. 1. For reasons which will be-
come clearer later, it is difficult to numerically distinguish
the global variations from the local fluctuations. This is in Which is very close to the exact GSE result. As shown in Fig.
particular the case for data of large lattice size. In othed, the data is in perfect agreement with the prediction. This is
words, we might have removed too much by some of theas well true for the large lattic&,= 16" (left part, as for the
unfolding procedures, while we might have removed toosmall lattice,V=4* (right pary. The spacing distribution of
little by others. This will be discussed in great detail below,the intermediate lattice sizes are not distinguishable from the
especially in Sec. Il E. both shown. We have complete agreement between theory
One has to ensure that any deviations seen in the spectrand lattice data for any choice of lattice size and coupling
statistics are not due to global variations in the average dersonstant.
sity which were not removed adequately. One way is to use
different unfolding approaches and compare the results care-
fully. Another way is to take only a small window of the ] ) .
spectra in which the global variation of the density is ex- I an interval of lengt. in units of the mean level spac-
pected to be small. Thus we choose an intefxal+\]and  ing, the mean number of eigenvalues should be equal to
calculate the ensemble averaged mean level spaxing it. ~ S€€ Ed(12). The variance of this number is defined [30]
We then rescale the eigenvalues in this interval as ) e
ZAL)=((L=n,(L))%). (15

C. Two-point spectral correlations

E=NID, N<N<A+ON. (13  Thus, an interval of lengthL contains on average
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=4:1, or so[1]; see Fig. 5. Thus, any deviations from RMT
behavior appear at smalldr in 32(L) as compared to
Ag(L). B
If we unfold with the ensemble staircase functisdin),
we obtain the following results. The number variance can be
seen in Fig. 7. Data for different lattice sizes and different
gauge couplings are shown in comparison to the RMT pre-
02 46 8101214 0246 8101214 dictions for some regions of the spectra. We find that the
' ! point where the deviation sets in, scales with the square root
FIG. 6. The two-point correlation functioX,(r)(left) and the  of the lattice volume,
cluster functionY,(r) (right) as a function of, compared with the
GSE predictions. The result is independent of the unfolding ap- ARMT%C\/V
proach. D |

10 | HAARA

0.5 1]

Xo(r)
Y,(r)

0.0 ¢

(19

+\3?(L) levels. For uncorrelated Poisson speck¥L)  The numerical constanC is approximately given byC

=L. RMT predicts for the number variance stronger corre-~0.3. This should be compared with the result obtained in

lations, namelys (L)~ logL. [18] for the microscopic region. There, the scaling
Another important quantity is the spectral rigidity(L), N rwr/D~0.3 ... 0.3V was found. This is independent of

defined as the least square deviation of the staircase functidhe region of the spectra we consider and of the coupling
from the straight lind30], strengthg. This is shown in Fig. 7. There different regions of

the spectra are considered, each corresponding to different

1 atl ) values ofp(\); see Fig. 1. The results are the same. Further-
As(L)=({T mlnA,BL dé(N(§)—AE-B)°). (16)  more, the deviation points for differeftappear to coincide,
whereas the local average density depends on the gauge cou-

Since it can be expressed as an integral over the numb&ing, p(\)=p(\,B); see Fig. 1. The scaling relatidd9)
variance can nicely be seen from Fig. 8, in which theaxes of Fig. 7

is rescaled with/V. We see that the crossover from RMT to
5 (L non-universal behavior appears to be the same for all lattice
As(L):—f dr(L3—2L2r +r3)32(r), (17)  sizes independent oB. But the slope varies for different
L*Jo couplings and regions of the spectra. When we use window-
ing instead, we get the same results as obtained by ensemble
it is smoother thar®?(L). unfolding. But the data points scatter more compared to Figs.
The number variance can be expressed as an integral @fand 8.
the two-point cluster functiolY,(r) [30], which depends for The importance of a proper choice of the unfolding
translational invariant spectra only on the differemee|é, = method becomes manifest as the above picture changes dras-
— &,| between two levels af; and &,, tically if we unfold each configuration separately. As dis-
played in Fig. 9, the polynomial unfolding leads to an over-
L shooting of the data over the predictions but further out,
EZ(L)ZL—ZJ (L=r)Yy(r)dr. (18)  compared to ensemble unfolding, while in the Gaussian as
0 well as in the local cas®?(L) saturates. Note the different
scale compared to Fig. 7 and also the difference in scale
between number variance and spectral rigidity, as mentioned
above. The result of the polynomial approach does not de-
end on the degreeof the polynomial. Furthermore we find
o scaling with\/V for the deviations of polynomial unfold-
ing; see Fig. 10. The deviation point appears to be the same
. A€or different lattice sizes. The saturation of the small lattices
up to L=20 andL=_1QO, respectively, are shown. Lattice is due to the limited number of eigenvalues in the considered
datg ar_1d RMT predictions agree remarkably well, even theenergy range. The same picture arises for the number vari-
oscillations inX,(L) are accurately reproduced. Naturally, 5nce-"overshooting for the polynomial, saturation for Gauss-
previous ar}e_llysegll] with ST“a”er data sets have _Iess St-ian and local approach. The general tendency of these results
t!st|cal §|gn|f|cance. Two-point cIust.er a'."d correlation f.unc'are already obtained for each configuration separately, but
tion which usually are not accessible in data analysis arghe data points scatter. After averaging over all configura-

shown in Fig. 6. Again, the agreement is impressive. t#'ons the scattering becomes much smaller; see Figs. 5 and 9.
Beyond this scale there are considerable deviations o

A4(L) as well as ofS?(L) from RMT predictions which

depend on the unfolding procedure used. We mention that on
general grounds one can show that any scale€s?{.) and The wealth of data allows us to go beyond a previous
Ag(L), sayL* andL?, respectively, are related Hy*:L>  analysis[12] of higher moments of the eigenvalue partition,

The cluster function is related to the two-point correlation
function X,(r) which measures the probability density to
find two levels at a distant by X,(r)=1—Y5(r). In con-
trast toP(s), these two levels are not restricted to adjacentg
ones.

In Fig. 5, number variance and spectral rigidity for scale

D. Higher order spectral correlations
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FIG. 7. Deviations from RMT predictions for different lattices siad¢sand gauge couplings. Shown are different regions of the
spectrum as indicated in the upper left part of the plots.
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FIG. 8. Deviation from the RMT predictions rescaled with the square root of the volume, to be compared with Fig. 7. The crossover
between RMT and non-universal behavior is Bk r/D)V~?~0.3.
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respectively. The comparison of RMT predictions with lat-
tice data for these both quantities in Fig. 11 again shows very
good agreement.

The measuresy;(L) and y,(L) only contain a small
amount of information of the spectral correlations. More-
over,y,(L) andy,(L) also involve lower order correlations:
v, is a combination of the two- and the three-point cor-
relator,Y,(r) andY;(r4,r,), andy, involves in addition the
four-point correlatory ,(r1,r,,r3). The representation of the
moments in terms of integrals over the correlators reads

L
us(L>=L—6fO(L—r>Yz<r>dr

L L—ry
—GJ drlf dro(L—=ry—=r2)Ys(ry,rp)
0 0

(23

=3, Gaussian and local unfolding with averaging interval Iengthand
k=100 are shown. Note the different scale on the abscissa com-

pared to Fig.

We notice thaju,(L)=32(L). The skewness and the excess

5.

pi(L)={((L—ny(L))).

[30] are defined by

and

y1(L) = pa(L) puo(L) ~ 32

¥o(L)=pa(L) po(L) 23,

0.6

057t

HL)

04t

037}

(20

(21)

(22

pa(L)=L— (14— 12L)fOL(L—r)Y2(r)dr

L 2
+1Z{f (L—r)Yz(r)dr}
0

L L—rq
+36] drlf dro(L—rq—r5)Y3(rq,ro)
0 0

L L—rq L—rq—ry
—24] drlf drzf drs
0 0 0

X(L=ry=ry=r3)Ya(ry,ro,rs). (24

A=0.9-2.7

— theory
—- 16'B=24
16° g=2.5
- 19‘ B=20
- 8pe18
—-g*p=20
~—- g g=22
—- 6'p=2.0
- - 6'p=22
- - 4*g20

25

50 75

L

FIG. 10. Comparison between RMT and lattice data by unfolding each configuration separately with a polynomial.
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FIG. 11. Integrated three-point and four-point function, skew- 5122.55
nessy;(L) and excess,(L), respectively, as defined in Eq21)— 1.0 m 4memwmwm L0
(24). The lattice size i%=16% as in Fig. 5. The solid line represent 0.5 f ; | 0.5
the RMT predictions and the dots the data. On this scale the pre- ! i Mot N
; . 0.0 0.0 =
sented data points do not depend on unfolding. 5=2.55
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Obviously, by analyzingy;(L) andy,(L), one cannot easily 2 2

estimate to what extent the three- and the four-point correla-

tors themselves obtained from the lattice calculations fOHOWand the cluster functioifs(s, ,s,)(right) as a function ofs, for

the predictions of RMT. . . different values ofs;=0.70, 1.40 and 2.5%from top to bottony,
Here, the three- and the fou_r-pomt cIust(_er funCtIonS'compared with the GSE predictions. As in Fig. 6 the results are

Y3(ry,rz) and¥Y,(ry,rz,rs) are written as functions of the jhgependent of the unfolding approach.

arguments;(i=1,2,3) which are defined terms of the origi-

FIG. 12. The three-point correlation functioks(s;,s,)(left)

nal arguments;(i=1,2,3,4) by becauseYj(s;,s,) is the disconnected correlator, and it
B _ _ should represent the true three-point correlation, while
M=&=&, TM=&~ &, 376 & (25 Xs(s;1,S,) also contains the two- and one-point functions.

We constructed from the data the two-point and the threel "€Y Play a dominate role and are in good agreement with

point correlation functionX,(s) andX5(s;,S,) and the cor- the co_rrespondmg GSE predictions. We notice that this
responding cluster functioné,(s) andYs(s, s,). Here, for analysis was only possible due to the extremely higher num-

convenience, we redefined the arguments for the three—poiﬁ’ter of levels available.

correlators as follows: o _ o
E. Qualitative discussion of the deviations

S1=&— &=, Sy=&3—&1=r+T1,. (26) for configuration unfolding

Using ensemble unfolding, we find deviations from RMT

The rgsult:s Erxi(zslf'sﬁ and Y.3(51’52|) are fp_lrohtted W'Itth behavior, which scale with the square root of the volume
error bars n F1g. Or Some given valuessy € resuits according to the theoretical predictions. But as we unfold

do not depend on unfolding. In the construction of the.seeach configuration separately this effect vanishes. There are
correlators, we first performed a spectral average by usin

the translational invariance due to unfolding, and then avergtlll deviations left but none of them showd/ scaling law.
Moreover, we have a dependence of the results on the un-
aged over the ensemble. The errors %%(s;,s,) and folding approach

Y3(s1,S,) were estimated as the variance of the ensemble . : : .
: . Concerning local and Gaussian unfolding, an explanation
fluctuations. Once more, very good agreement with the RMT. .
- . seems to be easy at hand. As mentioned above, both proce-
predictions forXs(s;,s,) is found, apart from a small sys-

. L > . dures have an intrinsic, artificial, scale. In units of the mean
tematic deviation which we believe can be understood a?evel spacing it has the value~100 for V=16 in both
follows. From the relation betweeX;(s;,s,) andX,(s) P 9

cases. This is approximately where the saturation of the sta-
_ _ _ tistics seen in Fig. 9 sets in. We conclude that this artificial
Xs(S1:52) =Y5(S1,5) =24 Xa(81) + Xl ) + Xo(5y 3(22)7) scale cause&?(L) and A;(L) to saturate. In other words,
both approaches are not capable to allow statements at scales
one has L=100. Nevertheless, both approaches do not show a behav-
ior as shown in Figs. 7,8 fdr<100.
X3(81,82)|s,—0e=Xa(S1)- (28 On the other hand, the polynomial unfolding also deviates
from RMT predictions; see Fig. 10. As this approach does
Therefore, even a small point-deviation of the two-point cor-not contain an additional scale, we can rule out effects like
relator ats, from the theoretical predictions can result in a the one discussed above. The question is, whether the devia-
systematic deviation of the whole cur¥g(s;,s,) versuss, tions in Fig. 10 are due to a Thouless energy or if they have
for this givens;. For Y5(s;,s,), the quality of the agree- another origin.
ment with RMT is only slightly reduced, but still remarkable.  The fluctuating part of the integrated level density
In addition to the systematic deviation, one can see somh q,(\) should be of orde)(1), asmentioned above. In
random fluctuations around the theoretical curves. This ishe upper part of Fig. 13 the difference between the real
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—_ average —_ average f/(Q2a) f/(2a) f/(Q2a) f/(2a)
3 2 3 2
g g i f the oscillation
2 \ Al 2 o FIG._ 14. Square of the Fourier transform 0
Y i =0 \ shown in Fig. 13, but fod (N(\) — Npgy(A))/dX instead ofN())
8 -2 8 -2 —Npoy(A), as given by Eq(29).
Z -4
4 4 remaining ones are the same for both degrees. We conclude
1 2 1 2 that only the first peak, corresponding to the long wave part
N (2a)* Nt of Fig. 13, is common to all configurations. All others fluc-

tuate from configuration to configuration.

FIG. 13. Difference between the fitted polynom like staircase \We conclude that the average level dengityd\) and
function and the real staircase function for one arbitrarily chosenp s the average integrated level density{\) consist of
configuration(upper part The lower part shows the difference be- 4, parts, namely a very smooth polynomial-like part and
tween the staircase found by ensemble averaging and a polynom gtnother, non-universal, part,
to it. The degrees of the polynomials ame=4,5. Polynomial of
degreen=3 gives the same result as=4. The plotted interval Navd A) = Npoiy(N) +Ngsd N). (30)
contains approximately 16000 eigenvalues.

We stress again that the existence of a polynomial-like
staircase function and the smooth polynomial staircase funesmooth part is suggested by pertubative amdl, Bxpansions
tion, N(A\) —Npgy(\), for one specific configuration is plot- of the QCD level density26,27. It is expected to be gov-
ted. This picture remains qualitatively the same whateveerned by the available phase space: for free fermions the
configuration is chosen. The polynomial fits have a systemspectral density is given at|]\|—© by pad\)
atic deviation from a smooth behavior larger th@fil). The  =N_V|\|*/472 [32], whereN, is the number of colors. This
difference between the ensemble staircase and polynomial fillso holds in a M. expansion of the interacting theory on
N(X\) —Npoy(X) is shown in the lower part of Fig. 13. A scales which are Iargg compared t(_) the hadronic §éale _
polynomial of degre@=3 gives the same result as=4. To  This is the region we investigated in the spectra, as the ei-
obtain a better insight in this obviously not universal behav-genvalues are given in units of the inverse lattice spacing as
ior, we calculate the power spectrum a 1~10 fm 1=~2 GeV; see Figs. 1 and 13. This is why

g we tried to approximate the average level density by a func-
* i tion which is as smooth as a polynomial.
F(f):ffmd)‘ e’ lka()‘l’)‘Z’)‘)ﬁ(N()‘)_NPO'V()‘)) ' The additional structure of the level density appears to
(299  have similarities to oscillations; see Figs. 13 and 14. Thus,
we refer to it as “oscillatory part,'Nys{\). This oscillatory
By construction, the derivative in the integrand gives thepart explains the different behavior ak(L) and32(L) for
fluctuations of the level density. The window function largel for different unfolding methods. The polynomial un-
K(N1.M2,\) has to be introduced because we only have dolding is clearly unable to remove the oscillations and fits
finite interval of eigenvalues in the Fourier transform overonly Nyq,(\). Thus, the oscillatory part is still present in the
the whole real axis. It is zero outside the interwal<\  unfolded spectrum. The presence of these oscillations leads
<\,. The choice is not unique insidi81]. Thus, the Fourier to values forA;(L) larger than predicted by RMT, because a
transform is a convolution of the transforms of(\) fit to a straight line can only be done in a less accurate
—Npoy(N) andK(Xq,N5,N). In order to reduce the influence manner. In contrast to that, the Gaussian and the local un-
of the Fourier transform ok(X1,A,,\) on the results as far folding is capable to fitN,qy(\) and part ofN o \). How-
as possible, we use a triangle windd®1]. The result is ever, it is not clear whether the fit to the oscillatory part is
shown in Fig. 14. In the right part one sees the Fourier transdone completely or if, on the other hand, it does not smooth
form of the ensemble averaged density. Only the very firsbut part of the universal fluctuations, i.e. overfits the data
peak is left, both for polynomial of degree=4 andn=5.  points. But, because of the saturation3f(L) and A5(L),
The latter is reduced in amplitude. On the left side the transsee Fig. 9, we think that probably the latter happens.
form of an arbitrary chosen configuration is plotted. The first However, as argued above, since we expect the physical
peaks are reduced in amplitude again fier5, whereas the density to be as smooth as a polynomial, the oscillatory part

054501-10



STATISTICAL ANALYSIS AND THE EQUIVALENT OF . .. PHYSICAL REVIEW D 59 054501

03 | =24 p=24 o

89999

-$:3:13

Ay(L)
(L)

2.5
0.3 pe

50000000000
AAAAAAAAAAAAAA

Az(L)
(L)

0.2

0 500 1000 1500 0 200 400 600
L L

FIG. 15. Number varianc&2(L) and spectral rigidityA3(L) for polynomial unfolding with the withdrawal of the long wave length
oscillations, as explained in the text. In each plot the data corresponds from top to bottom to g get@f1.5(2a), 3.0(2a), 7.0(2a), and
10.0(2a), respectively.

is likely to be a lattice artifact. This is suggested by Figs. 13of the statistics in Fig. 14 foff .,=7.0(22),10.0(22). A
and 14 which show that these oscillations live on the scale ofutoff of f.,=1.5, .. .,3.0(2a) seems to be the best choice,
the inverse lattice spacingal/ As [\| cannot be arbitrarily but we are not able to give an exact value. This figure also
large in lattice gauge theory, due to an ultraviolet cutoff inshows a comparison betweeB=2.4 and g=2.5 for V
momentum for finite lattice spacing, the increase of the =16% Both values off give almost the same result. The
density is disturbed by lattice artifacts. For the large latticesprocedure also removes the slight differences seen in Fig. 3
i.e., V=16 the deviations due to lattice artifacts set in atfor the polynomials forl.=200. From all this, we conclude
approximately the same scale as the expected equivalent oft@at the deviations in Fig. 10 are due to a non-polynomial-
Thouless energy. This can be seen from {Aé scaling of like part in the average level density and not due to an
the smaller lattices. A rough estimate giveg,t/D~30 for  equivalent Thouless energy.
V=16" for 32(L). Therefore one should be careful with the A possible way to circumvent the problems encountered
determination of the deviation point for large lattices in theby lattice artifacts is windowing as discussed in Sec. Il A 3.
bulk of the spectra. After removing this part from the data,However, this works only if the size of the windows is at
we find for22(L) reasonable agreement with the RMT pre- least so small that the oscillations of Fig. 13 are not impor-
diction up to at least. ~300 and with some uncertainties tant, i.e.,6A<a 1. Another way might be ensemble unfold-
even toL~500; see Fig. 15. Because of the complicateding, Sec. lll A 1. As the lattice artifacts are seen in each
structure of the average level density it is not possible taconfiguration as well as in the average integrated level den-
make any statement beyond this scale. In chaotic billiardssity this approach might remove the oscillations. But it is by
so-called bouncing ball modes generate effects which arao means clear if it really does, especially for large interval
similar to the ones herg9]. In that case, however, an ana- lengths. As both approaches give similar results for small
lytical prediction for the oscillatory behavior was at hand. lattices,V<10*, for intervalsL <20, we conclude that the
Such a result is also highly desirable in our case. It would bartifacts are not important on these scales. This is supported
needed to furnish our phenomenological removal of the osby the observations that deviations due to them set ib at
cillations with a theoretical justification. ~ 25 for polynomial unfolding, independently of the lattice
In any case, we may use the information displayed in Figsize; see Fig. 10. Thus, these artifacts become important for
14 to phenomenologically remove the oscillatory part. Weanalysis of larger lattices, i.&/=16% and for even larger
cut the power spectrum at a certain interval, back transfornones in future examinations.
the remaining peaks in the frequency interyaif.,] and From all this we conclude that we do not see an equiva-
subtract the smooth oscillatory part of the integrated levelent of a Thouless energy if we unfold each configuration
density obtained in this manner. We do this for each configuseparately. This is in complete contrast to the results gained
ration separately. This procedure changes the result of thiey ensemble unfolding. The former surely removes the fluc-
statistical analysis in a crucial way, as can be seen from Figuations in Fig. 2, whereas the latter does not. We conclude
15. There, the results for spectral measures are shown fahat this fluctuation with respect to the ensemble already con-
different choices of ;. Because only the very first peak is tains the information needed to determine the Thouless en-
common to all spectra whereas higher frequencies appear &rgy. After removing this information it seems that there is
be specific for each configuration, a choice ®&f,; no further information in the spectra, i.e., we find agreement
>3.0(2a) is actually too large. This manifests in a saturationwith RMT on huge scales.
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IV. SUMMARY AND DISCUSSION .
AL Poisson ~L

After summarizing our results in Sec. IV A, we discuss

our findings in Sec. IV B. GE ~logL

A. Summary A
We presented a detailed analysis of statistical properties
of complete eigenvalue spectra for staggered fermions for
SU(2) lattice gauge theory for various couplings and lattice v
volumes. Unfolding the data posed certain difficulties which iA i L

are not encountered in other systems. The staircase function

found by an average over the ensemble differs in most cases FIG. 16. Possible scenarios for the spectral rigidity. Plotted are
from the smooth staircase of one specific configuration. Théhe linear Poisson behavior and the logarithmic increase of the
deviations are as large 6(:N()\)>—W()\) — @(101) for V Gaussian ensemblé6E) as predicted by RMT, respectively. “A”

—16* Varying the unfolding approach leads to different re_correspond to a saturation due to shortest periodic orbits and “B”

sults for large scales. In particular, there is a drastic differ!© lnéar increase due the scale set by a Thouless energy.

ence between ensemble and configuration unfolding.

Using ensemble unfolding, we find a range of validity of large amount of data, our results achieved a quality never
RMT, giving Agyr/D =C+V. The numerical constant is ap- reached before. Due to translational invariance in the bulk of
proximately given asC~0.3. which is compatible with the the spectra the general tendency for all of the observables
result obtained 18] for the microscopic region where the can already be seen for one specific configuration. Averaging
scaling A\gyr/D~0.3 ... 0.2V was found. The same re- over all configurations increases the statistical significance of
sults are obtained if we use windowing, but with less statisthe results. The results for small valuesconsiderably im-
tical significance. prove the statistical significance of previous analyses

By unfolding each configuration separately, we do not se¢11,17. To the best of our knowledge, we presented the first
any scaling of this type. This procedure obviously removesstatistically highly significant analysis of bare two- and, im-
the fluctuations of the _stair.case function. relative to the €Nportantly, three-point spectral correlators. Very good agree-
semble average seen in Fig. 2. We notice that fluctuationg,ent petween lattice data and RMT predictions is found. We
over the ensemble can already be observed in the integrateghy minor deviations for the three-point cluster functions. In

level d_ensity. But there are still d_eviations depending on theOur opinion, their origin are probably very small point-
unfolding approach used. In particular there is an OVerShOO&eviations of the two-point functions

for polynomial unfolding at largé. The reasons for this lies
in special features of the average level density, which con-
sists of at least two parts: a smooth polynomial-like and an
oscillatory part. Hence the Thouless energy is due to the Some scenarios for the level statistics are shown in Fig.
fluctuations in the ensemble. 16. There the spectral rigidity is plotted. The two solid lines
We want to clarify the difference in the notion of ergod- represent Poisson and RMT behaviohs(L)~L and
icity used in spectral analysis and in lattice calculations, rex ,(|)~|ogL, respectively. The dashed lines represent sche-
spectively. Concerning the analysis of spectra, a system igatically two different cases. Case “A” corresponds to a
called ergodic if spectral and ensemble average yield thgcenario known from systems with few degrees of freedom.
same results. It can be proven rigorously that random matriype ghortest periodic orbit in phase space sets a scale which
ces have this property in the limit of large matrix d'mens'on'forcesA3(L) to saturate at a certaln, [33]. But by increas-

However, here we face a different S|_tuat|on. We.e.mpha3|z g the degrees of freedom of the system, this scale becomes
that these issues do not affect the notion of ergodicity as use ) : .

. . . ! i . ; .~ ever larger and is hard to be seen. As we may view lattice
in connection with lattice simulations. The latter is defined

by the requirement that the space of possible lattice configug

ration is explored reasonably fast by the simulation algoVe do not expect to see this scale in the level statistics.

rithm. We emphasize that the time history of the spectra ig hereéfore one should not be tempted to conclude that the
not of importance for the calculation of the spectral obsery-Saturation seen in Figs. 9,15 is the analogue of “saturation of

able of Sec. Ill, because it is only relevant that the configufluctuation measures” which was observed in the energy
rations used, see Table |, are representative members of t}rvel statistics for classically chaotic systems and was inter-
ensemble, i.e., ergodicity in the sense of lattice simulations igreted by Berry in terms of shortest periodic orbigs3].
fulfilled. This is ensured by our algorithms as described inUnlike in the case of quantum billiards where an analytic
Sec. Il. Furthermore, this is supported by the observation the@xpression for the average spectral density exists, the
our results do not change if we take arbitrary subsets oN,,{\) that we obtained in our analysis was only a numeri-
configurations, only the scattering of the data points in-cal result. Most likely all three approaches, i.e. Gauss, local
creases. and modified polynomial, fit also parts of the universal fluc-

Furthermore we analyzed the nearest neighbor spacingyations which shows up as a saturation of the statistics
distribution, skewness and excess for smallDue to the Ag(L) andX3(L).

B. Discussion
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Another scenario is given by case “B” which lies be- ered. Using the Gell-Mann-Oakes-Renner relation, it should
tween Poisson and RMT behavior. It can arise in three difbe determined by the pion decay constBntand the chiral

ferent physical situationil]: condensate,,
(1) Systems in few degrees of freedom between regularity
and chaos. The spectral rigidity lies between the Poisson Fi
limit, which applies to regular systems and the RMT limit RRMTNm- (33

which applies to chaotic systems, provided the staleis
much larger thar g .

(2) Disordered systems id dimensions. The time, for
the classical diffusion through the system of sizéwhere
Ls is the size in each dimension determines an energy scale ARyt Fi
~ V. (34)

In the microscopic region the mean level spacingDis
=a/(2V), so that Eq(33) can be rewritten as

E =#lt,, (3D) D

the Thouless energy. This in turn sets the scalg;r/D The predicted scaling behavior was found very recently in
whereD is the single particle mean level spacing. For energythe microscopic regiofil8]. There a crossover from RMT to
separations in units dd smaller than this scale, RMT fluc- non-universal behavior was found with the scaling B#).
tuations are seen. For larger energy separation, deviations &s argued in Ref[16], a similar relation should also be seen
sketched in Fig. 16 occur. in the bulk of the spectrum. Here, however, the mean level
(3) Many body systems such as nuclei, molecules or comspacingD is that of the bulk. In the present work, we have
plex atoms. In the language of condensed matter physicshown that, first, the scalegyr/D exists in the bulk, and,
these systems are zero-dimensional. Consider the Hamisecond, that it shows the predicted scaling behavior. The
tonian of such a systetd =Hy+H,; whereH, has a certain latter observation is a support for the ideas that link QCD to
property andH, breaks this property. The influenceldf on  disordered systems and thus to a diffusiordidimensions.
the statistics of the spectrum bf, is measured in terms of However, as outlined above, our findings are necessary but
the spreading width not sufficient for this conclusion. They do not rule out other
physical mechanisms that lead to a spreading width or Thou-
I'=2m(H})/Dg (32)  less energy. This underlines the strength of our analysis: it
] ] ) does not depend in any way on a model for this mechanism.
where D, is the mean level spacing df, and (H3) the |t js a self-consistent statistical method to find the scale
mean square matrix element idf, . In particular, ifHo has )\, -/D.
P0|s§on statistics aridl_ RMT statistics the spectral rigidity We hope that the identification of this scalgy/D can
acquires the form of Fig. 16 anid sets the scal@ryr/D.  help to improve our understanding of certain features of
As discussed above, situati¢f) is not likely to apply.  QCD as it may allow one to separate the stochastic noise of
We emphasize that the Thouless eneffgyand the spreading  the short range fluctuations from the true dynamics of the
width I' defined in(2) and (3) are closely related concepts. QCD vacuum. Most desirably, these results could help to

Actually, in his original paper, Thoule$43] definedE; as a  design effective models or to simplify the presently used
special kind of spreading width. The precise relation betweeimulation algorithms in lattice gauge theories.

A rut/D and E; has been studied in great detail in the
framework of RMT[34]. We notice that the definition i(R)
which is most commonly used in condensed matter physics,
relatesg. to dimensionality, whereaF is defined in zero It is a pleasure to thank M.E. Berbenni-Bitsch for her help
dimensions. Thus, the sheer existence of a scglg /D can  in generating the data sets. We are grateful to C. Mejia, H.J.
imply, but does not necessarily imply that the deviation fromPirner, A. Schier, H.A. Weidenmiler and T. Wettig for
RMT is related to a diffusion in & dimensional disordered enlightening discussions. We thank H.L. Harney and H. Alt
system. for supplying the data set of RdR9] for test purposes. T.G.

Recent theoretical studies aim at establisHih§—17 a  acknowledges support from the Heisenberg foundation. S.M.
link between disordered systems and QCD. In these works, thanks the MPI fu Kernphysik for the hospitality and ac-
range of validityA g7 Of applicability of RMT was consid- knowledges the support by a DFG grant Me 567/5-3.
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